
一、个人基本情况
姓名:马颖
性别:女
职称职务:副研究员,博士生导师
所在部门:数学系应用数学研究所
学术兼职:美国数学会评论员
二、主要研究方向
偏微分方程数值解,量子力学中的偏微分方程
三、教育与工作经历
教育经历
2017/08-2018/08 新加坡国立大学,数学系,公派联合培养
2015/09-2019/06 山东大学,数学学院,博士
2012/09-2015/06 山东大学,数学学院,硕士
2008/09-2012/06 西北师范大学,数学与信息科学学院,学士
工作经历
2025/04-至今 suncity太阳新城,suncitygroup太阳新城数学系,副研究员,入选suncity太阳新城高层次人才队伍建设计划——青年优秀人才
2021/11-2025/04 suncity太阳新城,suncitygroup太阳新城数学系,讲师
2020/08-2021/09 新加坡国立大学,数学系,博士后
2019/07-2021/10 北京计算科学研究中心,应用与计算数学研究部,博士后
四、主要科研项目
国家自然科学基金青年基金项目,2025-2027,主持
北京市教委科技计划(面上)项目,2024-2026,主持
五、代表性学术成果与荣誉
[1] W.Z. Bao, Y. Ma, C.S. Wang, Optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and nonlinearity. Mathematical Models and Methods in Applied Sciences, 05(2024), 1-42.
[2] B. Lin, Y. Ma, C.S. Wang, A Lawson-time-splitting extended Fourier pseudospectral method for the Gross-Pitaevskii equation with time-dependent low regularity potential. Journal of Computational Physics, 512(2024), 113133.
[3] W.Z. Bao, L.Z. Chen, X.Y. Jiang, Y. Ma, A Jacobi spectral method for computing eigenvalue gaps and their distribution statistics of the fractional Schrödinger operator. Journal of Computational Physics, 421(2020), 109733.
[4] Y. Ma, T. Zhang, Error estimates of finite difference methods for the biharmonic nonlinear Schrödinger equation. Journal of Scientific Computing, 95(2023), 24.
[5] Y. Ma, J. Yin, Error bounds of the finite difference time domain methods for the Dirac equation in the semiclassical regime. Journal of Scientific Computing, 81(2019), 1801-1822.
[6] Y. Ma, L.Z. Chen, Error estimates of exponential wave integrators for the Dirac equation in the massless and nonrelativistic regime. Numerical Methods for Partial Differential Equations, 40(2024), 1-22.
[7] Y. Feng, Y. Ma, Improved uniform error bound on the time-splitting method for the long-time dynamics of the fractional nonlinear Schrödinger equation. Communications in Mathematical Sciences, 22(2024), 1-14.
[8] T. Zhang, Y. Ma, Optimal error bounds of the time-splitting sine-pseudospectral method for the biharmonic nonlinear Schrödinger equation. Applied Numerical Mathematics, 207(2025), 414-430.
[9] W.Z. Bao, B. Lin, Y. Ma, C.S. Wang, An extended Fourier pseudospectral method for the Gross-Pitaevskii equation with low regularity potential. East Asian Journal on Applied Mathematics, 14(2024), 530-550.
[10] Y. Ma, J. Yin, Error estimates of finite difference methods for the Dirac equation in the massless and nonrelativistic regime. Numerical Algorithms, 89(2022), 1415-1440.
六、主讲课程
高等数学,本科
电磁流体动力学方程,硕士
七、指导研究生
每年招收一名研究生
八、联系方式
地址:suncity太阳新城数理楼514
E-mail:maying@bjut.edu.cn