
一、个人基本情况
姓名:赵欣苑 性别:女
职称:教 授 所在部门:suncitygroup太阳新城
E-mail:xyzhao@bjut.edu.cn
社会兼职:
中国运筹学会数学规划分会副秘书长及常务理事
中国运筹学会数学与智能分会副秘书长及理事
北京市运筹学会理事
二、研究方向
1. 大规模矩阵优化理论、算法及其应用
2. 大规模优化问题的快速算法及应用
3. 统计和机器学习中的智能优化算法
三、教育与工作经历
博士,(2009),新加坡国立大学数学系,导师:Toh Kim Chuan教授和孙德锋教授
硕士,(2002),南京航空航天大学计算数学系,导师:倪勤教授
本科,(1999),南京航空航天大学计算数学系
四、荣誉奖励
2022年,荣获中国运筹学会《中国运筹学会科学技术奖运筹应用奖》。
2014年,荣获“suncity太阳新城优秀教师”。
2010年,荣获北京运筹学会《青年优秀论文奖》一等奖。
五、主要科研项目
纵向课题
2023-2026年,国家自然科学基金面上项目,”凸复合二次锥优化问题的算法及软件研究”(PI)。
2019-2022年, 国家自然科学基金面上项目, ”非凸规划的分布式增广拉格朗日型方法:理论、算法及应用”(PI)。
横向课题
2023-2024年,企事业委托项目,“公交系统算法模型服务合作项目”(PI)。
2022-2024年,企事业委托项目,“超大规模阵列天线系统直接优化求解合作项目” (PI)。
2020-2022年,企事业委托项目,“视频防抖路径规划技术合作项目” (PI)。
2019-2020年,企事业委托项目,“自然梯度与拟牛顿法技术合作项目” (Co-PI)。
六、代表性成果
[1]Kaihuang Chen, Defeng Sun, Yancheng Yuan, Guojun Zhang, and Xinyuan Zhao, HPR-LP: An implementation of an HPR method for solving linear programming, arXiv:2408.12179 (August 2024). Mathematical Programming Computation (2025). HPR-LP code
[2] Defeng Sun, Yancheng Yuan, Guojun Zhang, and Xinyuan Zhao, Accelerating preconditioned ADMM via degenerate proximal point mappings, SIAM Journal on Optimization, 35:2 (2025) 1165–1193.
[3] Bo Yang,Xinyuan Zhao,and Jiaming Ma, A Halpern Fixed-Point Iteration-Based Approach to Harmonic Model Predictive Control Problem, Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 42(04), pages 1-29, August.
[4] Bo Yang, Xinyuan Zhao, Xudong Li, and Defeng Sun, An accelerated proximal alternating direction method of multipliers for optimal decentralized control of uncertain systems, Journal of Optimization Theory and Applications,204,9 (2025).
[5] Shiwei Wang, Chao Ding, Yangjing Zhang, and Xinyuan Zhao, Strong variational sufficiency for nonlinear semidefinite programming and its implications, SIAM Journal on Optimization, 33:4 (2023) 2988-3011.
[6] Liang Chen, Junyuan Zhu, and Xinyuan Zhao, Unified convergence analysis of a second-order method of multipliers for nonlinear conic programming, Science China Mathematics, 2022, 65: 2397—2422.
[7] Ying Cui, Chao Ding, Xu-Dong Li, and Xin-Yuan Zhao, Augmented Lagrangian methods for convex matrix optimization problems, Journal of the Operations Research Society of China, DOI: 10.1007/s40305-021-00346-9, 2021.
[8] Qian Zhang, Xinyuan Zhao, and Chao Ding, Matrix optimization based Euclidean embedding with outliers, Computational Optimization and Applications, 2021, 79(2): 235-271.
[9] M.Y. Chen, K.X. Gao, X.L. Liu, Z.D. Wang, N.X. Ni, Q. Zhang, L. Chen, C. Ding, Z.H. Huang, M. Wang, S.L. Wang, F. Yu, X.Y. Zhao and D.C. Xu, THOR, Trace-Based Hardware-Driven Layer-Oriented Natural Gradient Descent Computation, Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(8), 7046-7054.
[10] Zhuoxuan Jiang, Xinyuan Zhao, and Chao Ding, A proximal DC approach for quadratic assignment problem, Computational Optimization and Applications, 2021, 78(3): 825-851.
[11] Xin-Yuan Zhao and Liang Chen, The Linear and Asymptotically Superlinear Convergence Rates of the Augmented Lagrangian Method with a Practical Relative Error Criterion, Asia-Pacific Journal of Operational Research, 2020, 37(4), 2040001 (16 pages).
[12] Defeng Sun, Kim-Chuan Toh, Yancheng Yuan, and Xin-Yuan Zhao, SDPNAL+: A Matlab software for semidefinite programming with bound constraints (version 1.0), Optimization Methods and Software, 35 (2020), 87-115. arXiv:1710.10604. SDPNALplus code
[13] Ying Cui, Chao Ding, and Xinyuan Zhao, Quadratic growth conditions for convex matrix optimization problems associated with spectral functions, SIAM Journal on Optimization, 27:4 (2017) 2332-2355.
[14] Bai Yan, Qi Zhao, Zhihai Wang and Xinyuan Zhao, A hybrid evolutionary algorithm for multi-objective sparse reconstruction, Signal, Image and Video Processing, 2017, 11(6): 993-1000.
[15] X. Y. Zhao, T. Cai, and D. Xu, A Newton-CG Augmented Lagrangian Method for Convex Quadratically Constrained Quadratic Semidefinite Programs, Proceedings in Mathematics & Statistics, 95(2015), pp 337-345.
[16] Chenchen Wu, Dachuan Xu, and Xinyuan Zhao, Improved approximation algorithm for the 2-catalog segmentation problems using semidefinite programming relaxations, Journal of Industrial and Management Optimization, 2012, 8(1): 117-126.
[17] Xin-Yuan Zhao and Kim-Chuan Toh, Infeasible potential reduction algorithms for Semidefinite Programming, Pacific Journal of Optimization, 2012, 8(4): 725-753.
[18] Xing Wang, Dachuan Xu, and Xinyuan Zhao, A primal-dual approximation algorithm for the stochastic facility location problem with service installation costs, Frontiers of Mathematics in China, 2011, 6(5): 957-964.
[19]Xin-Yuan Zhao, Defeng Sun, and Kim-Chuan Toh, A Newton-CG augmented Lagrangian method for semidefinite programming, SIAM Journal on Optimization, 20:4 (2010) 1737-17