132.suncitygroup太阳新城
数学(0701)
数学(0701)
苏帅
发布时间:2023-02-27 发布者: 浏览次数:

·S. Su, H. Tang, A positivity-preserving and free energy dissipative hybrid scheme for the Poisson-Nernst-Planck equations on polygonal and polyhedral meshes, Comput. Math. Appl., 108(2022)33-48.

·S. Su, H. Tang, J. Wu, Anefficientpositivity-preservingfinitevolumescheme for thenonequilibriumthree-temperatureradiationdiffusionequations onpolygonalmeshes, Commun. Comput. Phys., 30(2)(2021)448-485.

·Q. Dong, J. Wu, S. Su, Relationship between the vertex-centered linearity-preserving scheme and the lowest-order virtual element method for diffusion problems on star-shaped polygons, Comput. Math. Appl., 79(2020)3117-3138.

·Q. Dong, S. Su, J. Wu, Adecoupled andpositivity-preserving DDFVscheme fordiffusionproblems onpolyhedralmeshes, Commun. Comput. Phys., 27(5)(2020)1378-1412.

·Q. Dong, S. Su, J. Wu, Analysis of the decoupled and positivity-preserving DDFV schemes for diffusion problems on polygonal meshes, Adv.Comput.Math.,  46(2020)12.

·S. Su, J. Wu, A vertex-centered and positivity-preserving finite volume scheme for two-dimensional three-temperature radiation diffusion equations on general polygonal meshes, Numer. Math. Theor. Meth. Appl., 13(1)(2020) 220-252.

·S. Su, Q. Dong, J. Wu, A vertex-centered and positivity-preserving scheme for anisotropic diffusion equations on general polyhedral meshes,Math.Meth.Appl.Sci.,42(1)(2019)59-84.

·S. Su, Q. Dong, J. Wu, A decoupled and positivity-preserving discrete duality finite volume scheme for anisotropic diffusion problems on general polygonal meshes, J. Comput. Phys., 372(2018)773-798.

·X. Zhang, S. Su, J. Wu, A vertex-centered and positivity-preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids, J. Comput. Phys., 344(2017)419-436.

上一页 [1] [2] [3] [4] [5] [6] [7] [8] 下一页

上一条:陶琪
下一条:江雪
132.suncitygroup太阳新城

版权所有 © suncity太阳新城 京公网安备:110402430086  京ICP备:14043795号-2   COPYRIGHT © 中国·suncitygroup太阳新城(集团)官方网站-首页|NO1