132.suncitygroup太阳新城
数学(0701)
数学(0701)
陶琪
发布时间:2023-02-27 发布者: 浏览次数:

发表的论文:

[1]Q. Taoand Y. Xia,Error estimates and post-processing of local discontinuous Galerkin method for Schrödinger equations, J.Comput.Appl.Math., 356 (2019), 198-218.

[2]Q. Taoand Y. Xu,Superconvergence of arbitrary lagrangian-eulerian discontinuous galerkin methods for linear hyperbolic equations, SIAM J.Numer.Anal., 57 (2019), 2142-2165.

[3]Q. Tao, Y. Xu, and C.-W. Shu,An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives, Math. Comput., 89 (2020), 2753-2783.

[4]Y. Liu,Q. Tao, and C.-W. Shu,Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation, ESAIM-Math. Model. Num. (M2AN), 54 (2020), 1797-1820.

[5]Q. Tao, Y. Xu, and C.-W. Shu,A discontinuous Galerkin method and its error estimate for nonlinear fourth-order wave equations, J. Comput. Appl. Math., 386 (2021), 113230.

[6]Q. Tao, W. Cao, and Z. Zhang,Superconvergence analysis of the ultra-weak local discontinuous Galerkin method for one dimensional linear fifth order equations, J. Sci. Comput., 88 (2021), 63.

[7]Q. Tao, Y. Xu and X. Li,Negative norm estimate of arbitrary Lagrangian-Eulerian discontinuous Galerkin methods for nonlinear hyperbolic equations, Commun.Appl.Math.Comput., 4 (2022), 250-270.

[8]Y. Liu, J. Lu,Q. Taoand Y. Xia,An oscillation-free discontinuous Galerkin method for shallow water equations, J.Sci.Comput., 92 (2022), 109.

[9]Q. Tao, L. Ji, J.K. Ryan and Y. Xu,Accuracy-enhancement of discontinuous Galerkin methods for PDEs containing high order spatial derivatives, J.Sci.Comput., 93 (2022), 13.

上一页 [1] [2] [3] [4] [5] [6] [7] 下一页

上一条:李静
下一条:苏帅
132.suncitygroup太阳新城

版权所有 © suncity太阳新城 京公网安备:110402430086  京ICP备:14043795号-2   COPYRIGHT © 中国·suncitygroup太阳新城(集团)官方网站-首页|NO1