132.suncitygroup太阳新城
数学(0701)
数学(0701)
马颖
发布时间:2025-02-21 发布者: 浏览次数:

[1]W.Z. Bao, L.Z. Chen, X.Y. Jiang,Y. Ma,A Jacobi spectral method for computing eigenvalue gaps and their distribution statistics of the fractional Schrödinger operator.Journal of Computational Physics,421(2020),109733.

[2]W.Z. Bao,Y. Ma,C.S. Wang, Optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and nonlinearity.Mathematical Models and Methods in Applied Sciences,05(2024), 1-42.

[3]B. Lin,Y. Ma,C.S. Wang, A Lawson-time-splitting extended Fourier pseudospectral method for the Gross-Pitaevskii equation with time-dependent low regularity potential.Journal of Computational Physics,512(2024), 113133.

[4]Y. Ma,T. Zhang, Error estimates of finite difference methods for the biharmonic nonlinear Schrödinger equation.Journal of Scientific Computing,95(2023), 24.

[5]Y. Ma,J. Yin, Error bounds of the finite difference time domain methods for the Dirac equation in the semiclassical regime.Journal of Scientific Computing,81(2019), 1801-1822.

[6]Y. Ma,L.Z. Chen, Error estimates of exponential wave integrators for the Dirac equation in the massless and nonrelativistic regime.Numerical Methods for Partial Differential Equations,40(2024), 1-22.

[7]Y. Feng,Y. Ma,Improved uniform error bound on the time-splitting method for the long-time dynamics of the fractional nonlinear Schrödinger equation.Communications in Mathematical Sciences,22(2024), 1-14.

[8]T. Zhang,Y. Ma,Optimal error bounds of the time-splitting sine-pseudospectral method for the biharmonic nonlinear Schrödinger equation.Applied Numerical Mathematics,207(2025), 414-430.

[9]W.Z. Bao, B. Lin,Y. Ma,C.S. Wang, An extended Fourier pseudospectral method for the Gross-Pitaevskii equation with low regularity potential.East Asian Journal on Applied Mathematics,14(2024), 530-550.

[10]Y. Ma, J. Yin, Error estimates of finite difference methods for the Dirac equation in the massless and nonrelativistic regime.Numerical Algorithms,89(2022), 1415-1440.

上一页 [1] [2] [3] [4] [5] [6] 下一页

上一条: 张亚璞
下一条:王艺桥
132.suncitygroup太阳新城

版权所有 © suncity太阳新城 京公网安备:110402430086  京ICP备:14043795号-2   COPYRIGHT © 中国·suncitygroup太阳新城(集团)官方网站-首页|NO1