132.suncitygroup太阳新城
数学(0701)
数学(0701)

陈晓敏

  点击:[]

[1]X.M. Chenand A.H. Yan. Hungry Lotka--Volterra lattice under nonzero boundaries, block-Hankel determinant solution, and biorthogonal polynomials.Studies in Applied Mathematics,2023, 151(3):1097--1135.

[2]X.M. Chen, X.K. Chang, Y. He, X.B. Hu. Generalized discrete Lotka-Volterra

equation, orthogonal polynomials and generalized epsilon algorithm,Numerical Algorithms, 2023,92(1): 335-375.

[3]X.M. Chen. Nonisospectral extension of Schur flow with determinant solution and orthogonal polynomials on the unit circle,Physica D, 2023, 444.

[4]X.M. Chenand X.B. Hu. Nonisospectral Lotka-Volterra systems as a candidate model for food chain.Ann. Appl. Math.2023

[5] A.Dimakis, F.Mueller-Hoissen,X.M.Chen. Matrix Boussinesq solitons and their tropical limit.Physica Scripta,2019, 94(3), 1-15.

[6]X.M. Chen, X.B. Hu, F. Müller-Hoissen. Non-isospectral extension of the Volterra lattice hierarchy, and Hankel determinants.Nonlinearity, 2018, 31,4393-4422.

[7]X.M. Chen, X.K. Chang, J.Q. Sun, X.B. Hu and Y.N. Yeh. Three semi-discrete integrable systems related to orthogonal polynomials and their generalized determinant solutions.Nonlinearity, 2015, 28(7), 2279.

[8] X.K. Chang,X.M. Chen, X.B. Hu and H.W. Tam. About several classes of bi-orthogonal polynomials and discrete integrable systems.Journal of Physics A: Mathematical and Theoretical, 2015, 48(1), 015204.

[9] X.K. Chang,X.M. Chenand X.B. Hu. A generalized nonisospectral

Camassa-Holm equation and its multipeakon solutions.Advances in Mathematics,2014, 263, 154-177.

[10]陈晓敏,常向科,李世豪,王宝.可积系统与正交多项式交叉研究概述.数学进展,2021, 50(5), 666-688.

上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9]

上一条:诸葛昌靖 下一条:郑彬

关闭


132.suncitygroup太阳新城

版权所有 © suncity太阳新城 京公网安备:110402430086  京ICP备:14043795号-2   COPYRIGHT © 中国·suncitygroup太阳新城(集团)官方网站-首页|NO1